Problems: Week 7

7-1. Write down the physical bases of Kirchhoff's rules for electrical circuits.

7-3. In the circuit shown, $I_1 = 3amp$ and ε and R are not given. Calculate I_2 and I_3 .

7-4. Calculate R_{AB} and the currents in all the resistors if $V_{AB} = 6V$.

7-5. Show that RC has the dimensions of time.

7-6. Why does the characteristic time of an RC circuit depend on both R and C?

7-7. $R = 10k\Omega$ and $C = 10\mu F$ at t = 0, S_2 is open and S_1 is closed. Calculate potential across C and the current in R at (i) 0.1sec (ii) 0.3sec (iii) t = 1sec.

7-8. A long time later the switch S_1 in the circuit of problem 7-7 is opened and S_2 is closed, now calculate V_C and i at times (i) 0.1sec (ii) 0.3sec and (iii) 1sec after opening the switch. [Indicate direction of current].

7-9. Shown are two circuits

If both switches are closed at t = 0, which capacitor voltage will reach 6V first? Why?

7-10. In the circuit shown, S is closed at t = 0. (i) What is the current in the circuit at t = 0? (ii) What is the potential across C a long time later? (iii) What is the current in the circuit a long time later? Justify your answers.

7-11. How many time constants must elapse before the capacitor in an RC circuit reaches a charge within 1% of its final (equilibrium) value?

7-15. In the presence of a $\underline{B} = -B\hat{z}$, a positively charged particle with velocity $\underline{v} = v\hat{x}$ at t = 0, will go around on a circle of radius $R = \frac{MV}{qB}$. How much work is done by \underline{B} as the particle goes half-way around the circle? Why?

